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Abstract

Current methodologies used for the inference of thin film stress through curvature measurement are strictly restricted to
stress and curvature states that are assumed to remain uniform over the entire film/substrate system. These methodologies
have recently been extended to a single layer of thin film deposited on a substrate subjected to the non-uniform misfit strain
in the thin film. Such methodologies are further extended to multi-layer thin films deposited on a substrate in the present
study. Each thin film may have its own non-uniform misfit strain. We derive relations between the stresses in each thin film
and the change of system curvatures due to the deposition of each thin film. The interface shear stresses between the adja-
cent films and between the thin film and the substrate are also obtained from the system curvatures. This provides the basis
for the experimental determination of thin film stresses in multi-layer thin films on a substrate.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Stoney (1909) studied a system composed of a thin film of thickness hf, deposited on a relatively thick sub-
strate, of thickness hs, and derived a simple relation between the curvature, j, of the system and the stress, r(f),
of the film as follows:
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In the above the subscripts ‘‘f’’ and ‘‘s’’ denote the thin film and substrate, respectively, and E and m are the
Young’s modulus and Poisson’s ratio. Eq. (1.1) is called the Stoney formula, and it has been extensively used
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in the literature to infer film stress changes from experimental measurement of system curvature changes (Fre-
und and Suresh, 2004).

Stoney’s formula was based on the following assumptions, some of which have been relaxed.

(i) Both the film thickness hf and the substrate thickness hs are uniform and hf� hs� R, where R repre-
sents the characteristic length in the lateral direction (e.g., system radius R shown in Fig. 1). This
assumption was recently relaxed for the thin film and substrate of different radii (Feng et al., 2006)
and for arbitrarily non-uniform film thickness (Ngo et al., 2007). Their analytical results have been ver-
ified the X-ray microdiffraction experiments (Brown et al., 2007).

(ii) The strains and rotations of the plate system are infinitesimal. This assumption has been relaxed by var-
ious ‘‘large’’ deformation analyses (Masters and Salamon, 1993; Salamon and Masters, 1995; Finot
et al., 1997; Freund, 2000), some of which have been validated by experiments (Lee et al., 2001; Park
et al., 2003).

(iii) Both the film and substrate are homogeneous, isotropic, and linearly elastic. To our best knowledge this
assumption has not been relaxed yet.

(iv) The film stress states are equi-biaxial (two equal stress components in any two, mutually orthogonal in-
plane directions) while the out-of-plane direct stress and all shear stresses vanish. This assumption has
been relaxed for non-equi-biaxial stress states (Shen et al., 1996; Wikstrom et al., 1999a; Park and Sur-
esh, 2000; Freund and Suresh, 2004).

(v) The system’s curvature components are equi-biaxial (two equal direct curvatures) while the twist curva-
ture vanishes in all directions. This assumption has been relaxed for non-equi-biaxial curvature compo-
nents and non-vanishing twist components (Shen et al., 1996; Wikstrom et al., 1999b; Park and Suresh,
2000; Freund and Suresh, 2004).

(vi) All surviving stress and curvature components are spatially constant over the plate system’s surface, a
situation that is often violated in practice. Recently, Huang et al. (2005) and Huang and Rosakis
(2005) relaxed this assumption for the thin film/substrate system subjected to non-uniform, axisymmetric
misfit strain (in thin film) and temperature change (in both thin film and substrate), respectively, while
Ngo et al. (2006) and Huang and Rosakis (in press) studied the thin film/substrate system subject to arbi-
trarily non-uniform (e.g., non-axisymmetric) misfit strain and temperature. Their most important result
is that the film stresses depend non-locally on the system curvatures, i.e., they depend on curvatures of the
entire system.
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Fig. 1. A schematic diagram of multi-layer thin films deposited on a substrate, showing the cylindrical coordinates (r,h,z).
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Despite the explicitly stated assumptions of spatial stress and curvature uniformity, the Stoney formula is
often, arbitrarily, applied to cases of practical interest where these assumptions are violated. This is typically
done by applying Stoney’s formula pointwise and thus extracting a local value of stress from a local measure-
ment of the curvature of the system. This approach of inferring film stress clearly violates the uniformity
assumptions of the analysis and, as such, its accuracy as an approximation is expected to deteriorate as the
levels of curvature non-uniformity become more severe.

Many thin film/substrate systems involve multiple layers of thin films. The main purpose of this paper is to
extend the above analyses by Huang, Rosakis and co-workers to a system composed of multi-layer thin films
on a substrate subjected to non-uniform misfit strain distribution. We will relate stresses in each film and sys-
tem curvatures to the misfit strain distribution, and ultimately derive a relation between the stresses in each
film and system curvatures that would allow for the accurate experimental inference of film stresses from
full-field and real-time curvature measurements.
2. Axisymmetric misfit strains

We first consider a system of multi-layer thin films deposited on a substrate subjected to axisymmetric misfit
strain distribution eðiÞm ðrÞ in the ith layer (i = 1,2, . . . ,n), where r is the radial coordinate, and n is the total num-
ber of layers of thin films (Fig. 1). The thin films and substrate are circular in the lateral direction and have a
radius R. The deformation is axisymmetric and is therefore independent of the polar angle h.
2.1. Governing equations

Let hf iði ¼ 1; 2; . . . nÞ denote the thickness of the ith thin film (Fig. 1). The total thickness hf ¼
Pn

i¼1hf i of all
n films is much less than the substrate thickness hs, and both are much less than R, i.e. hf� hs� R. The
Young’s modulus and Poisson’s ratio of the ith thin film and substrate are denoted by Ef i , mf i , Es and ms,
respectively.

The substrate is modeled as a plate since it can be subjected to bending and hs� R. The thin films are mod-
eled as membranes that have no bending rigidities due to their small thickness hf� hs. Therefore they all have
the same in-plane displacement uf(r) in the radial (r) direction. The strains are err ¼ duf

dr and ehh ¼ uf

r . The stres-
ses in the ith thin film can be obtained from the linear elastic constitutive model as
rðf iÞ
rr ¼

Ef i

1� m2
f i

duf

dr
þ mf i

uf

r
� ð1þ mf iÞeðiÞm

� �
;

rðf iÞ
hh ¼

Ef i

1� m2
f i

mf i

duf

dr
þ uf

r
� ð1þ mf iÞeðiÞm

� �
:

ð2:1Þ
The membrane forces in the ith thin film are
N ðf iÞ
r ¼ hf ir

ðf iÞ
rr ; N ðf iÞ

h ¼ hf ir
ðf iÞ
hh : ð2:2Þ
For non-uniform misfit strain eðiÞm ðrÞ, the shear stress tractions along the film/film and film/substrate interfaces
do not vanish, and are denoted by s(i)(r) (i = 1,2, . . . ,n) as shown in Fig. 2. The normal stress tractions still
vanish because thin films have no bending rigidities. The equilibrium equations for thin films, accounting
for the effect of interface shear stress tractions, become
dN ðf iÞ
r

dr
þ N ðf iÞ

r � N ðf iÞ
h

r
� ðsi � siþ1Þ ¼ 0; ð2:3Þ
where sn+1 = 0 for the traction free surface. Substitution of Eqs. (2.1) and (2.2) into (2.3) and the summation
of its left hand side yield
d2uf

dr2
þ 1

r
duf

dr
� uf

r2

� �Xn

i¼1

Ef i hf i

1� m2
f i

¼ sð1Þ þ
Xn

i¼1

Ef i hf i

1� mf i

deðiÞm

dr
: ð2:4Þ
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Fig. 2. A schematic diagram of the non-uniform shear traction distribution at the film/substrate and film/film interfaces.
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Let us denote the displacement in the radial (r) direction at the neutral axis of the substrate, and w the displace-
ment in the normal (z) direction. The forces and bending moments in the substrate are obtained from the lin-
ear thermo-elastic constitutive model as
N ðsÞr ¼
Eshs

1� m2
s

dus

dr
þ ms

us

r

� �
;

N ðsÞh ¼
Eshs

1� m2
s

ms

dus

dr
þ us

r

� �
;

ð2:5Þ

Mr ¼
Esh

3
s

12ð1� m2
s Þ

d2w
dr2
þ ms

r
dw
dr

� �
;

Mh ¼
Esh

3
s

12ð1� m2
s Þ

ms

d2w
dr2
þ 1

r
dw
dr

� �
:

ð2:6Þ
The shear stress s(1) at the thin film/substrate interface is equivalent to the distributed axial force s(1) and bend-
ing moment hs

2
sð1Þ applied at the neutral axis of the substrate. The in-plane force equilibrium equation of the

substrate then becomes
dN ðsÞr

dr
þ N ðsÞr � N ðsÞh

r
þ sð1Þ ¼ 0: ð2:7Þ
The out-of-plane force and moment equilibrium equations are given by
dMr

dr
þMr �Mh

r
þ Q� hs

2
sð1Þ ¼ 0; ð2:8Þ

dQ
dr
þ Q

r
¼ 0; ð2:9Þ
where Q is the shear force normal to the neutral axis. Substitution of Eq. (2.5) into Eq. (2.7) yields
d2us

dr2
þ 1

r
dus

dr
� us

r2
¼ � 1� m2

s

Eshs

sð1Þ: ð2:10Þ
Elimination of Q from Eqs. (2.8) and (2.9), in conjunction with Eq. (2.6), gives
d3w
dr3
þ 1

r
d2w
dr2
� 1

r2

dw
dr
¼ 6ð1� m2

s Þ
Esh

2
s

sð1Þ: ð2:11Þ
The continuity of displacement across the thin film/substrate interface requires
uf ¼ us �
hs

2

dw
dr
: ð2:12Þ
Eqs. (2.4) and (2.10), (2.11), (2.12) constitute four ordinary differential equations for uf, us, w and s(1).
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We can eliminate uf, us and w from these four equations to obtain the shear stress s(1) at the thin film/sub-
strate interface in terms of the misfit strains. For hf� hs, s(1) and the shear stresses s(i) (i = 2,3, . . . ,n) between
thin films
sðiÞ ¼ �
Xn

j¼i

Ef j hf j

1� mfj

deðjÞm

dr
: ð2:13Þ
This is a remarkable result that holds regardless of boundary conditions at the edge r = R. Therefore, the
interface shear stress is proportional to the gradient of misfit strains. For uniform misfit strains
eðiÞm ðrÞ ¼ constant, the interface shear stress vanishes, i.e., s(1) = 0.

Substitution of the above solution for shear stress s(1) into Eqs. (2.11) and (2.10) yields ordinary differential
equations for displacements w and us in the substrate. Their solutions, at the limit of hf� hs, are
dw
dr
¼ �6

1� m2
s

Esh
2
s

1

r

Z r

0

g
Xn

i¼1

Ef i hf i

1� mf i

eðiÞm ðgÞdgþ B1

2
r; ð2:14Þ

us ¼
1� m2

s

Eshs

1

r

Z r

0

g
Xn

i¼1

Ef i hf i

1� mf i

eðiÞm ðgÞdgþ B2

2
r; ð2:15Þ
where B1 and B2 are to be determined. The displacement uf in the film is obtained from the continuity condi-
tion (2.12) across the interface as
uf ¼ 4
1� m2

s

Eshs

1

r

Z r

0

g
Xn

i¼1

Ef i hf i

1� mf i

eðiÞm ðgÞdgþ B2

2
� hsB1

4

� �
r: ð2:16Þ
The first boundary condition at the free edge r = R requires that the net force vanish,
Xn

i¼1

N ðf iÞ
r þ N ðsÞr ¼ 0 at r ¼ R; ð2:17Þ
which gives
B2 ¼
ð1� msÞ2

Eshs

Xn

i¼1

Ef i hf i

1� mf i

eðiÞm ð2:18ÞRR

for hf� hs, where eðiÞm ¼ 2

R2

R R
0

geðiÞm ðgÞdg ¼ eðiÞm dA

pR2 is the average misfit strain in the ith thin film. The second
boundary condition at the free edge r = R is vanishing of net moment, i.e.,
Mr �
hs

2

Xn

i¼1

N ðf iÞ
r ¼ 0 at r ¼ R; ð2:19Þ
which gives
B1 ¼ �6
ð1� msÞ2

Esh
2
s

Xn

i¼1

Ef i hf i

1� mf i

eðiÞm : ð2:20Þ
2.2. Stresses in multi-layer thin films and system curvatures

The system curvatures are related to the out-of-plane displacement w by jrr ¼ d2w
dr2 and jhh ¼ 1

r
dw
dr . The sum

of these two curvatures is
jrr þ jhh ¼ �12
1� ms

Esh
2
s

Xn

i¼1

Ef i hf i

1� mf i

eðiÞm þ
1þ ms

2
eðiÞm � eðiÞm

� �� �
: ð2:21Þ
The difference between two system curvatures is
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jrr � jhh ¼ �6
1� m2

s

Esh
2
s

Xn

i¼1

Ef i hf i

1� mf i

eðiÞm �
2

r2

Z r

0

geðiÞm ðgÞdg

� �
: ð2:22Þ
The sum and difference of stresses in each thin film are given by
rðf iÞ
rr þ rðf iÞ

hh ¼
Ef i

1� mf i

�2eðiÞm

� 	
; ð2:23Þ

rðf iÞ
rr � rðf iÞ

hh ¼ 4
Ef i

1þ mf i

1� m2
s

Eshs

Xn

j¼1

Ef j hf j

1� mfj

eðjÞm �
2

r2

Z r

0

geðjÞm ðgÞdg

� �
: ð2:24Þ
It is noted that rðf iÞ
rr � rðf iÞ

hh is in general expected to be smaller than rðf iÞ
rr þ rðf iÞ

hh for hf/hs� 1.
2.3. Extension of Stoney formula for a multi-layer thin film/substrate system

We extend the Stoney formula for a multi-layer thin film/substrate system subjected to non-uniform mis-
fits by establishing the direct relation between the stresses in each thin film and system curvatures. Both
jrr � jhh in Eq. (2.22) and rðf iÞ

rr � rðf iÞ
hh in Eq. (2.24) are proportional to

Pn
i¼1

Ef i hf i
1�mfi

eðiÞm � 2
r2

R r
0
geðiÞm ðgÞdg


 �
. Elim-

ination of misfit strains gives rðf iÞ
rr � rðf iÞ

hh in each film directly proportional to the difference jrr � jhh in sys-
tem curvatures,
rðf iÞ
rr � rðf iÞ

hh ¼ �
2Ef i hs

3ð1þ mf iÞ
ðjrr � jhhÞ: ð2:25Þ
We now focus on the sum of thin-film stresses rðf iÞ
rr þ rðf iÞ

hh and sum of system curvatures jrr + jhh. The average
system curvature jrr þ jhh is defined as
jrr þ jhh ¼
1

pR2

Z Z
A

jrr þ jhhð Þgdgdh ¼ 2

R2

Z R

0

g jrr þ jhhð Þdg: ð2:26Þ
It can be related to the average misfit strains by averaging both sides of Eq. (2.21), i.e.,
jrr þ jhh ¼ �12
1� ms

Esh
2
s

Xn

i¼1

Ef i hf i

1� mf i

eðiÞm : ð2:27Þ
The deviation from the average curvature, jrr þ jhh � jrr þ jhh, can be related to the deviation from the aver-
age misfit strains as
jrr þ jhh � jrr þ jhh ¼ �6
1� m2

s

Esh
2
s

Xn

i¼1

Ef i hf i

1� mf i

eðiÞm � eðiÞm

� �
: ð2:28Þ
Elimination of misfit strains
Pn

i¼1

Efi hfi
1�mf i

eðiÞm � eðiÞm

� �
and average misfit strains

Pn
i¼1

Efi hf i
1�mf i

eðiÞm from Eqs. (2.27),

(2.28) and (2.23) gives the sum of thin-film stresses in terms of system curvature as
Xn

i¼1

hf i

hf

rðf iÞ
rr þ rðf iÞ

hh

� �
¼ Esh

2
s

6ð1� msÞhf

jrr þ jhh þ
1� ms

1þ ms

jrr þ jhh � jrr þ jhhð Þ
� �

; ð2:29Þ
where hf ¼
Pn

i¼1hf i is the total thickness of thin films. Eq. (2.29) only gives the weighted sum of stresses in all

thin films,
Pn

i¼1

hf i
hf

rðf iÞ
rr þ rðf iÞ

hh

� �
, in terms of the system curvatures, but not stresses in each thin film.

It is clear that the curvatures alone for a system with all n thin films are not sufficient to determine the stres-
ses in all thin films. Additional parameters that can be measured in experiments are needed for the complete
determination of all film stresses. One possibility is the system curvatures jðiÞrr and jðiÞhh after the first i thin films
are deposited, and jðnÞrr ¼ jrr and jðnÞhh ¼ jhh. The system curvatures jðiÞrr and jðiÞhh can be measured during the
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deposition process, or after the deposition process by etching the top n � i thin films away. The stresses in the
ith thin film are then given by
rðf iÞ
rr þ rðf iÞ

hh ¼
Esh

2
s

6ð1� msÞhf i

DjðiÞrr þ DjðiÞhh þ
1� ms

1þ ms

DjðiÞrr þ DjðiÞhh � DjðiÞrr þ DjðiÞhh

� �� �
; ð2:30Þ
where
DjðiÞrr ¼ jðiÞrr � jði�1Þ
rr and DjðiÞhh ¼ jðiÞhh � jði�1Þ

hh ð2:31Þ
are the change of system curvatures due to the deposition of the ith thin film, and jð0Þrr ¼ jð0Þhh ¼ 0. The above
equation is identical to its counterpart for a single layer of thin film (Ngo et al., 2006) except that its curvatures
are replaced by the change of system curvatures DjðiÞrr and DjðiÞhh in Eq. (2.31). Eq. (2.31), together with Eq.
(2.25), provides the direct relation between stresses in each thin film and system curvatures. The thin-film stres-

ses at a point depend not only on the change of system curvatures DjðiÞrr þ DjðiÞhh at the same point (local depen-

dence), but also on the average change of system curvatures DjðiÞrr þ DjðiÞhh in the entire system (non-local
dependence).

The interface stress s(1) between the substrate and the first thin film and s(i) between thin films in Eq. (2.13)
can also be given by system curvatures
sðiÞ ¼ Esh
2
s

6ð1� m2
s Þ
Xn

j¼i

d

dr
DjðjÞrr þ DjðjÞhh

� �
¼ Esh

2
s

6ð1� m2
s Þ

d

dr
jrr þ jhh � jði�1Þ

rr � jði�1Þ
hh

� �
; ð2:32Þ
where jð0Þrr ¼ jð0Þhh ¼ 0. The above equation provides a remarkably simple way to estimate the interface shear
stresses from radial gradients of the two non-zero system curvatures. The shear stresses are responsible for
promoting system failures through debonding of thin films.
3. Non-axisymmetric misfit strains

We extend the analysis in the previous section to a system of multi-layer thin films deposited on a substrate
to arbitrary non-uniform misfit strains. The analysis is also an extension of Ngo et al. (2007) from a single thin
film to multi-layer thin films. The non-uniform misfit strain in the ith thin film, eðiÞm ðr; hÞ, can be expanded to
the Fourier series
eðiÞm ðr; hÞ ¼
X1
k¼0

eðiÞkc ðrÞ cos khþ
X1
k¼1

eðiÞks ðrÞ sin kh; ð3:1Þ
where eðiÞ0c ðrÞ ¼ 1
2p

R 2p
0

eðiÞm ðr; hÞdh, eðiÞkc ðrÞ ¼ 1
p

R 2p
0

eðiÞm ðr; hÞ cos khdh and eðiÞks ðrÞ ¼ 1
p

R 2p
0

eðiÞm ðr; hÞ sin khdh ðk P 1Þ.
3.1. Stresses in multi-layer thin films and system curvatures

The system curvatures are
jrr ¼
o2w
or2

; jhh ¼
1

r
ow
or
þ 1

r2

o2w

oh2
; jrh ¼

o

or
1

r
ow
oh

� �
: ð3:2Þ
The sum of system curvatures is related to the misfit strain by
jrr þ jhh ¼ �12
1� ms

Esh
2
s

Xn

i¼1

Ef i hf i

1� mf i

eðiÞm þ 1þms

2
eðiÞm � eðiÞm

� �

þ 1�m2
s

3þms

P1
k¼1

k þ 1ð Þ rk

R2kþ2

cos kh
R R

0
gkþ1eðiÞkc ðgÞdg

þ sin kh
R R

0
gkþ1eðiÞks ðgÞdg

" #
8>>><
>>>:

9>>>=
>>>;
; ð3:3Þ
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where eðiÞm ¼ 1
pR2

RR
Ae
ðiÞ
m ðg;uÞdA is the average misfit strain in the ith thin film, dA = gdgdu, and eðiÞm is also re-

lated to eðiÞ0c by eðiÞm ¼ 2
R2

R R
0

geðiÞ0c ðgÞdg. The difference between two curvatures, jrr � jhh, and the twist jrh are gi-

ven by
jrr � jhh ¼ �6
1� m2

s

Esh
2
s

Xn

i¼1

Ef i hf i

1� mf i

eðiÞm � 2
r2

R r
0
geðiÞ0c dg

þ 1�ms

3þms

P1
k¼1

kþ1
Rkþ2 k rk

Rk � k � 1ð Þ rk�2

Rk�2

h i cos kh
R R

0
gkþ1eðiÞkc dg

þ sin kh
R R

0
gkþ1eðiÞks dg

 !

�
P1
k¼1

kþ1
rkþ2 cos kh

R r
0
gkþ1eðiÞkc dgþ sin kh

R r
0
gkþ1eðiÞks dg

� �

�
P1
k¼1

k � 1ð Þrk�2 cos kh
R R

r g1�keðiÞkc dgþ sin kh
R R

r g1�keðiÞks dg
� �

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

; ð3:4Þ

jrh ¼ 3
1� m2

s

Esh
2
s

Xn

i¼1

Ef i hf i

1� mf i

1�ms

3þms

P1
k¼1

kþ1
Rkþ2 k rk

Rk � k � 1ð Þ rk�2

Rk�2

h i sin kh
R R

0
gkþ1eðiÞkc dg

� cos kh
R R

0
gkþ1eðiÞks dg

 !

þ
P1
k¼1

kþ1
rkþ2 sin kh
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The sum rðf iÞ
rr þ rðf iÞ

hh and differences rðf iÞ
rr � rðf iÞ

hh of stresses and the shear stress rðf iÞ
rh in the ith thin film are related

to the misfit strains by
rðf iÞ
rr þrðf iÞ
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1� mf i
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; ð3:6Þ
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The shear stresses sð1Þr and sð1Þh between the first thin film and substrate and sðiÞr and sðiÞh (i = 2,3, . . . ,n) between
thin films are related to the misfit strains by
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r
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: ð3:9Þ
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3.2. Extension of Stoney formula for a multi-layer thin film/substrate system

We extend the Stoney formula for a multi-layer thin film/substrate system by establishing the direct relation
between the stresses in each thin film and system curvatures. We define the coefficients Ck and Sk in terms of
the system curvatures jrr + jhh by
Ck ¼ 1
pR2

RR
A jrr þ jhhð Þ g

R

� 	k
cos kudA

Sk ¼ 1
pR2

RR
A jrr þ jhhð Þ g

R

� 	k
sin kudA;

ð3:10Þ
where the integration is over the entire area A of the substrate, and dA = gdgdu. The difference in stresses
rðf iÞ

rr � rðf iÞ
hh and shear stress rðf iÞ

rh in the ith film are given in terms of system curvatures by
rðf iÞ
rr � rðf iÞ

hh ¼ �
Ef i hs
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�
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R

� 	k�2
h i

Ck cos khþ Sk sin khð Þ
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9=
;; ð3:11Þ
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� 	k � ðk � 1Þ r
R

� 	k�2
h i
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8<
:

9=
;; ð3:12Þ
Similar to Section 2.3, we define the system curvatures jðiÞrr ; j
ðiÞ
hh and jðiÞrh after the first i thin films are deposited,

which can be measured during the deposition process, or after the deposition process by etching the top n � i
thin films away. The changes of system curvatures due to the ith thin film are
DjðiÞrr ¼ jðiÞrr � jði�1Þ
rr ; DjðiÞhh ¼ jðiÞhh � j i�1ð Þ

hh ; DjðiÞrh ¼ jðiÞrh � jði�1Þ
rh ; ð3:13Þ
where jðnÞrr ¼ jrr; jðnÞhh ¼ jhh; jðnÞrh ¼ jrh, and jð0Þrr ¼ jð0Þhh ¼ jð0Þrh ¼ 0. We also define the coefficients
DCðiÞk and DSðiÞk in terms of the changes of system curvatures DjðiÞrr þ DjðiÞhh by
DCðiÞk ¼ 1
pR2

RR
A DjðiÞrr þ DjðiÞhh

� �
g
R

� 	k
cos kudA

DSðiÞk ¼ 1
pR2

RR
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� �
g
R

� 	k
sin kudA:

ð3:14Þ
The sum of stresses in the ith film is given in terms of the changes of system curvatures by
rðf iÞ
rr þ rðf iÞ

hh ¼
Esh

2
s

6hf i 1� msð Þ

DjðiÞrr þ DjðiÞhh þ 1�ms
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� �
� 1�ms

1þms

P1
k¼1

k þ 1ð Þ r
R

� 	k
DCðiÞk cos khþ DSðiÞk sin kh
� �

2
664

3
775; ð3:15Þ
where DjðiÞrr þ DjðiÞhh ¼ DCðiÞ0 ¼ 1
pR2

RR
A DjðiÞrr þ DjðiÞhh

� �
dA is the average over entire area A of the substrate.

Eqs. (3.11), (3.12) and (3.15) provide direct relations between stresses in thin films and system curva-
tures. It is important to note that stresses at a point in the thin film depend not only on curvatures at
the same point (local dependence), but also on the curvatures in the entire substrate (non-local
dependence).

The interface shear stresses sðiÞr and sðiÞh can also be directly related to substrate curvatures via
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ð3:17Þ
These provide a way to estimate the interface shear stresses from the gradients of system curvatures. They also
display a non-local dependence.
4. Concluding remarks and discussion

The Stoney formula is extended in the present analysis for multi-layer thin films deposited on a substrate
subjected to non-uniform misfit strains. For multi-layer thin films (i = 1,2, . . . ,n) on a substrate, the total sys-
tem curvature jrr + jhh only gives the average stresses in all thin films, not stresses in each thin film. In the
present study the stresses in the ith thin film are obtained in terms of the change of system curvatures
DjðiÞrr þ DjðiÞhh due to the deposition of the ith thin film. The interface shear stresses between adjacent thin films
and between the thin film and substrate are also obtained from the curvatures. This provides the basis for
experimental determination of the stresses in each thin film and interface shear stresses.

Similar to a single layer of thin film on a substrate, the stresses in multi-layer thin films are related to the
system curvatures, and such dependence is non-local since the stresses at a point on the film depend on both
the local value of the system curvatures (at the same point) and on the value of curvatures of all other points
on the plate system (non-local dependence).
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